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Abstract 

The use of uniformity of the quiet-zone (QZ) in determining 
the maximum size of test antenna that can be measured in a 
given point-source compact antenna test range (CATR) has 
been the accepted method since its inception [1].  
Furthermore, the definition of a quiet zone (QZ) having 
amplitude taper of less than 1 dB, amplitude ripple of less 
than 0.5 dB in amplitude and 5 in phase has become a 
near universal standard both in academia and industry [1].  
However, this almost omnipresent usage belies the fact that 
surprisingly few workers are familiar with what this implies 
for an actual antenna pattern measurement.  The recent 
development of a novel computational electromagnetic 
(CEM) simulation tool that permits the simulation of 
“measured” far-field pattern data for a known CATR and test 
antenna combination [2] permits the careful examination of 
the behaviour of these three conventional CATR QZ 
specifications on “measured” far-field patterns for a given test 
antenna.  Results are presented and discussed. 

1 Introduction 

The point source compact antenna test range (CATR) uses a 
parabolic reflector to project an image of the feed antenna at 
infinity which has the effect of transforming the quasi-
spherical wave that is radiated by the feed (which is located at 
the focal point of the reflector) into a pseudo plane wave 
which is used to illuminate the test antenna thereby 
synthesising the classical far-field measurement 
configuration, only at a greatly reduced physical distance than 
would otherwise be the case.  The criteria for specifying the 
quality of this pseudo plane wave which is commonly used is: 
1 dB amplitude taper, 0.5 dB amplitude ripple and 5 phase 
ripple [1].  The amplitude taper is measured as the variation 
of a 2nd degree polynomial function that is obtained by means 
of, typically, a least squares best fit through the amplitude 
data over a cut through the quiet zone with the value being 
reported in dB.  The amplitude ripple is measured by 
determining the variation of the amplitude about the 2nd 
degree polynomial fit with this also being expressed in dB.  
The phase ripple is characterized by the deviation from a best-
fit straight line over the quiet zone and is expressed in 
degrees.  These linear cuts are typically acquired across 
horizontal, vertical or inter-cardinal cuts that are transverse to 

the z-axis of the range and are repeated at various z positions 
down range.  The maximum dimensions within a volume of 
space, typically cylindrical in shape, throughout which this 
specification can be achieved determines the size of the 
CATR quiet-zone (QZ) [1].  Amplitude taper and amplitude 
ripple parameters are illustrated in Figure 1 with the phase 
ripple being analogous to the amplitude ripple shown (without 
a taper).  These field properties are generally characterised as 
part of the CATR range installation using a procedure based 
upon a field probe scanner comprising a probe antenna 
mounted on a linear translation axis [1, 3].  The final facility 
acceptance is typically predicated upon the vendor being able 
to successfully demonstrate that these requirements have been 
met or exceeded. 

Quiet-Zone Width

 
Figure 1: Illustration of CATR amplitude taper and amplitude 

ripple specifications in the QZ. 
 
Unfortunately, in many cases it is not directly apparent how a 
given CATR QZ performance specification, when expressed 
in terms of amplitude taper, amplitude ripple and phase ripple 
will manifest itself on the resulting far-field antenna pattern 
measurement. 
 
Previous work in this area is relatively limited.  In the early 
days of CATR development the specification of QZ field 
amplitude taper of 1 dB and ripple as being less than 0.5 dB 
in amplitude and 5 in phase was determined from a 
heuristic viewpoint.  This is illustrated by [4] through taking 
scans of QZ amplitude and phase ripple and demonstrating 
that antennas measured in such QZ where comparable to 
outdoor far field measurements.  Later, computational 
techniques began to be used and in [5, 6] coupling between 
the AUT and CATR is expressed in terms of CATR 
modelling using Geometrical Optics (GO) and Geometric 
Theory of Diffraction (GTD) and plane wave spectra coupling 
to the AUT.  This work was used to illustrate the design of a 
CATR in terms of its reflector edge illumination and edge 
treatment. 
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With this limited quantification of this well used QZ 
specification, a sophisticated CEM modelling tool was 
recently developed [3] that allowed “measured” far-field 
patterns to be produced for a known CATR-AUT 
combination with the analysis being based on a well-known 
reaction theorem [1, 2].  While much of the existing work 
centred about obtaining the measurement uncertainty for a 
given CATR and AUT, this paper is primarily concerned with 
examining the impact that varying the aforementioned 
specifications has on the resulting antenna measurement and 
thereby examining and verifying the specification rules. 
 
The following sections examine each of the three 
specifications in turn so as to be able to establish the 
behaviour of the measurement artefacts before combining 
them to obtain the upper bound measurement uncertainty 
using the concept of an error to signal ratio, which is 
introduced in the following section. 

2 Assessment of Simulation Results 

When evaluating antenna test range assessments, the usual 
method for determining errors through measurement is to 
isolate and vary a single parameter of the test and observe 
pattern changes.  The change in the measurement parameter is 
designed to focus on a single error source within the facility 
level uncertainty budget, such as scattering or receiver 
linearity.  Differences in pattern characteristics, i.e. gain, side 
lobe level, cross-pol level, and pointing are then recorded.  
Often, it is possible to quantify local pattern differences by 
computing a signal-to-error level.  This signal-to-error ratio 
can then be used to evaluate the effects of the same error at a 
different pattern level, [1, 7].  This is a very powerful 
technique as it permits a generalisation to be made.  The error 
to signal ratio, E/S, can be calculated from the upper bound 
uncertainty using, 
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Conversely, the upper bound uncertainty can be computed 
from the error to signal ratio using, 
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By way of an illustration of this process let us take the 
example of the upper bound uncertainty at the -25 dB side-
lobe level (SLL).  Using equation (1) we can show that, an 
upper bound uncertainty of, say, 0.0983 dB at 0 dB equates to 
an Error to Signal (E/S) level of -38.876 dB relative to 0 dB.  
Clearly, relative to a -25 dB side-lobe, this equates to an E/S 
level of -13.876 dB.  Using equation (2) we can see that this 
corresponds to a 1.601 dB uncertainty at the -25 dB SLL.  In 
this way we can compute the uncertainty at for any desired 
side lobe level irrespective of whether that side-lobe level 

exists within the measured pattern.  From an examination of 
equations (2) and (3) it is clear that when the S/E is high (>25 
dB), the difference between the lower and upper bounds 
becomes negligible.  However, as the S/E reduces the 
difference becomes significant.  Which one should be chosen 
is generally a matter of how it will be applied to the final 
measurement.  The measurement uncertainty means that the 
true value falls somewhere between the upper and lower 
bounds plus the measurement. 
 
In the example illustrated above, the Equivalent Stray Signal 
(ESS) ratio is used to estimate the uncertainty in the side-lobe 
pattern results and represents the magnitude, relative to the 
peak of the main beam, of an error signal that is associated 
with the multiple reflection error term.  Since side-lobe 
uncertainties are desired for the full angular range and for 
different side-lobe levels, it is useful to determine a single 
value for the ESS/SIG that can be applied to all side-lobes. 
The peak value could be used, but it could also result in an 
unreasonably high estimate for most side-lobes.  A more 
reasonable estimate, that also provides a means to assign a 
confidence level to the uncertainty, is the Root Mean Square 
(RMS) of the E/S using all the points in the pattern.  This has 
the inherent advantage of increasing the number of points for 
which the comparison is performed thereby yielding a non-
local measure of adjacency. 

2 CEM Model 

As noted above and developed in [2], the coupling of the 
pseudo plane-wave into the aperture of an AUT creates the 
classical measured “far-field” radiation pattern.  Assuming 
the electric and magnetic fields radiated by a given antenna 
over the convenient enclosing surface are known then, it is 
possible to create a perfect plane wave and to use that to tap 
off the far-field pattern at a specific far-field direction be 
evaluating the reaction integral between the plane wave and 
the AUT.  The electric and magnetic fields of a perfect x-
polarised plane wave propagating in the positive z-direction 
can be expressed as, 
     x

zjk eeyxAzyxE ˆ,,, 0  (4) 

Here, we have assumed a positive, supressed, time 
dependency, A is the complex wave amplitude and k0 is the 
free-space propagation constant.  The corresponding magnetic 
fields can be obtained from the TEM condition specifically, 

    zyxEu
Z

zyxH ,,ˆ
1

,,
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  (5) 

Here, Z0 is the characteristic impedance of free space.  Thus, 
with the use of equations (4) and (5) we can create a plane 
wave with amplitude taper, amplitude ripple and phase ripple 
of our choosing using the definitions set out above.  For the 
simulations presented below, the case of a simulated WR90 
pyramidal horn AUT was utilised.  Here, the pyramidal horn 
had an aperture dimension of width 0.144 m, and height 0.194 
m with a horn length of 0.378 m, that is excited by the 
fundamental TE10 mode and radiating at 8 GHz.  The near 
electric and magnetic fields were computed across the surface 
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of an enclosing integrating surface of radius 0.91 m (3’).  In 
the sections that follow, the properties of A(x, y) are specified 
in terms of the CATR QZ performance parameters defined 
above across a 1.83 m (6’) diameter cylindrical QZ that 
corresponded to the spherical integrating surface.  The 
following sections examine each of these CATR QZ 
parameters individually and in each case observe the effect 
that a variation has on the corresponding “measured” antenna 
pattern. 

2.1 Amplitude Taper 

Figure 2 below contains a great circle azimuth far-field 
pattern cut of the simulated pyramidal horn antenna. The red 
trace shows the equivalent simulated “measured” far-field cut 
for the case where the illuminating plane wave had an 
amplitude taper of 0.25 dB.  Here, the amplitude ripple was 0 
dB and the phase ripple was 0.  The AUT was offset from 
the origin of the measurement coordinate system by 0.6096 m 
thereby insuring that the AUT traversed much of the assumed 
CATR QZ region.  For this case the ratio of the maximum 
radial extent of the AUT to the CATR QZ was 75.3%.  The 
impact of increasing or decreasing the utilisation of a CATR 
QZ is examined in a subsequent section.  The agreement 
between the truth model supplied by the ideal far-field pattern 
and the simulated measurement is very encouraging.  The 
difference level, denoted by the magenta trace, was computed 
and is not shown as it was below the -60 dB vertical lower 
limit of the plot.  The RMS difference level was computed 
over the entire great circle cut (and not just across the angular 
region shown in Figure 2) and was found to be -74.75 dB.  
Figure 3, 4 and 5 respectively present equivalent results for 
the case of a 0.5, 1.0 and 1.5 dB amplitude taper with the 
RMS difference levels being -68.64, -62.76 and -59.28 dB. 
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Figure 2: 0.25 dB Amplitude 
taper across QZ. 

Figure 3: 0.5 dB Amplitude 
taper across QZ. 
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Figure 4: 1.0 dB Amplitude 
taper across QZ. 

Figure 5: 1.5 dB Amplitude 
taper across QZ. 

 
This is a very encouraging result as it is clear that even for the 
case of a 1.5 dB taper, which is significantly greater than the 
accepted upper bound for this parameter, the RMS difference 
level was well below many of the other typically observed 
terms within the range uncertainty budget.  Furthermore, the 

differences were mostly evident in the wide-out pattern and 
back-lobes which can be a region of lesser interest in many 
commonly encountered applications. 

2.2 Amplitude Ripple 

The next parameter that was investigated was amplitude 
ripple for which the amplitude taper and phase ripple were set 
to zero.  As before, the AUT was offset from the origin of the 
measurement coordinate system by 0.6096 m.  Figures 6, 7, 8 
and 9 contain simulations of far-field “measurements”.  In 
addition to the amplitude of the ripple the spatial frequency of 
the ripple must be taken into account and this is examined 
specifically in Section 2.4 below.  However, for the 
simulations presented here, 5 ripples were assumed across the 
CATR QZ which is realistic, especially for lower frequency 
CATR performance. From inspection of these results, it is 
evident that the amplitude ripple has a greater impact on the 
resulting far-field “measurements” than was the case for the 
amplitude taper.  Here, the RMS difference level, i.e. the 
RMS value of the magenta trace, was -56.86 dB, -50.68 dB, -
44.39 dB and -37.81 dB for the 0.25 dB, 0.5 dB, 1.0 dB and 
2.0 dB amplitude peak-to-peak ripple cases respectively with 
the difference levels increasing towards the boresight 
direction.  Here, even for the 1 dB case, the agreement 
between the ideal pattern and the simulated measurement is 
good with the differences being most evident in the change in 
the level of the nulls depth with smaller differences appearing 
in the side-lobe levels. 
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Figure 6: 0.25 dB peak-to-
peak amplitude ripple. 

Figure 7: 0.5 dB peak-to-
peak amplitude ripple. 
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Figure 8: 1.0 dB peak-to-
peak amplitude ripple. 

Figure 9: 2.0 dB peak-to-
peak amplitude ripple. 

2.3 Phase Ripple 

The last parameter that was investigated was the phase ripple. 
Here, the amplitude taper and amplitude ripple was set to 
zero.  Again, the AUT was offset from the origin of the 
measurement coordinate system by 0.6096 m.  The peak-to-
peak phase ripple was set to 2.5, 5.0, 7.5 and 10.0 and the 
simulated “measurement” results can be found presented, 
respectively, in Figures 10, 11, 12 and 13 below. 



4 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
RMS Diff = -53.76 (dB)

Az (deg)

A
m

pl
itu

de
 (

dB
)

 

 

Reference

Phase Ripple 2.5 deg

 
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

-60

-55

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0
RMS Diff = -47.71 (dB)

Az (deg)

A
m

pl
itu

de
 (

dB
)

 

 

Reference

Phase Ripple 5 deg

Figure 10: 2.5 peak-to-peak 
phase ripple. 

Figure 11: 5.0 peak-to-peak 
phase ripple. 
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Figure 12: 7.5 peak-to-peak 
phase ripple. 

Figure 13: 10.0 peak-to-
peak phase ripple. 

 
As before, a spatial frequency of 5 wavelengths across the QZ 
was used.  As before, the amplitude difference level can be 
seen plotted and is denoted by the magenta trace with the 
RMS difference level also being computed.  Here, the RMS 
difference level was, respectively, -53.76 dB, -47.71 dB, -
44.26 dB and -41.38 dB for the 2.5, 5.0, 7.5 and 10.0 
peak-to-peak phase ripple cases.  As was the case for the 
amplitude ripple, the greatest differences can be seen in the 
near-in far-field pattern however, the change in the null depth 
levels is less pronounced in this case.  Otherwise, it is 
interesting to note that the impact that the phase ripple has on 
the “measured” far-field patterns is very comparable with the 
impact that the amplitude ripple has with the 1dB ripple and 
10 phase ripple both resulting in RMS difference levels of 
circa -44 dB an -41 dB respectively. This agrees with theory 
as a maximum phase error of 10º or a maximum amplitude 
error of 1 dB could be produced by the same error level [1]. 

2.4 Ripple Spatial Frequency 

Sections 4.2 and 4.3 above considered the effect of amplitude 
and phase ripple respectively on resulting far-field 
measurements.  However, no consideration was given to the 
effect of the spectral content of that ripple.  In this section the 
simulations are repeated however in this case the magnitude 
of the ripple was maintained with the wavelength being 
varied.  Figures 14 and 15 present the far-field amplitude and 
phase great circle cut for the case of a 1 dB amplitude taper, a 
1 dB amplitude ripple and a 10phase ripple with a spatial 
frequency of 5, 10, 20, 30 and 40 wavelengths per CATR QZ 
diameter.  The respective plots have been overlaid with the 
far-field phase patterns being compensated for the physical 
offset of the AUT in the measurement coordinate system so 
that the character of the phase patterns is more clearly 
discernible. 
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Figure 14: Far-field plot of 
simulated “measured” amp. 

Figure 15: Far-field plot of 
simulated “measured” phase. 

 
From inspection of Figure 14 it is evident that as the spatial 
frequency of the ripple increases, the location of the 
maximum difference between the simulated “measured” 
pattern and the reference pattern increases in angle with low 
spatial frequency ripple having a greater effect in the main 
beam region.  For example, the 20 ripple case had the largest 
impact on the 20 side-lobe.  The 5, 10, 20, 30 and 40 ripple 
cases resulted in a RMS difference level of, respectively, -
38.41 dB, -39.82 dB, -40.87 dB, -41.62 dB and -43.23 dB 
justifying the use of the 5 ripple case considered above as a 
reasonable worst case upper bound.  In practice the amplitude 
and phase ripple of a real CATR will have a far more 
complex spectral structure than that considered here.  
However, the purpose of this work was to establish and verify 
simple design rules and this is sufficient for that purpose. 

2.6 Combined Specification & Position of AUT in CATR 

As a final test, the impact of the location of the test antenna 
within the CATR QZ on the resulting far-field pattern 
measurements was examined.  Here, a 1 dB amplitude taper, 
1 dB amplitude ripple and 10 phase ripple was used for the 
case where the AUT was located at the origin of the 
measurement coordinate system and again when translated by 
0.61 m.  Figure 16 shows the amplitude pattern for the case 
where the AUT was located at the origin of the CATR QZ 
with 5 ripples while Figure 17 shows the equivalent case only 
here the AUT had been offset by 61 cm.  It is very evident 
that the RMS difference level has significantly increased as 
the AUT traverses a larger portion of the QZ.  Figures 18 and 
19 are equivalent plots only here the case of 10 ripples has 
been treated with a similar behaviour being evident. 
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Figure 16: AUT at origin of 
measurement coordinate 
system, 5 ripples. 

Figure 17: AUT offset from 
origin of measurement 
coordinate system by 61 cm, 
5 ripples. 
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Figure 18: AUT at origin of 
measurement coordinate 
system, 10 ripples. 

Figure 19: AUT offset from 
origin of measurement 
coordinate system by 61 cm, 
10 ripples. 

 
For the case where the AUT is offset by 61 cm we find that 
for the case where we have a 1 dB amplitude taper, 1 dB 
amplitude ripple and 10 phase ripple obtain a RMS 
difference level of -39.82 dB (Figure 19).  Thus, by using 
equation (2) above and assuming we wish to know the effect 
that this would have on a -20 dB side-lobe we can compute 
this using 20*log10(1 + 10^((-39.82 + 20)/20)) = 0.84 dB.  
However, for the case where the AUT is offset by 75 cm so 
that it traverses much of the quiet-zone, i.e. 91.8% utilisation, 
we obtain a higher RMS difference level of -38.98 dB.  Here, 
the effect that this would have on a -20 dB side-lobe would 
be, cf. Equation 2, +20*log10(1 + 10^((-38.98 + 20)/20)) 
=+0.93 dB and, cf. Equation 3, 20*log10(1 - 10^((-39.82 + 
20)/20)) =-1.04 dB.  This approximates the 1 dB value 
which is the accepted rule of thumb that is often stated (never 
derived from theory) that originates from what one typically 
sees in practice [7].  We can of course change these values 
subtly by displacing the AUT by a greater or lesser degree 
and by adjusting the spatial frequency of the amplitude and 
phase ripple as has been illustrated above.  However, the 
results obtained above are pretty stable and are sufficient for 
the purposes of generally specifying a given CATR with the 
work of [2, 3] being available should actual uncertainties for a 
known CATR AUT combination be required. 

3 Summary and Conclusions 

This paper, for the first time, has presented the results of a 
recent study involving the deployment of a new CATR CEM 
modelling tool to examining the effect that specific QZ 
performance parameters have on antenna pattern 
measurements acquired using a CATR with a pseudo plane 
wave possessing these properties.  It was found that the 
amplitude ripple and phase ripple parameters are the drivers 
for the range uncertainty budget with the amplitude taper 
having a comparatively lesser contribution.  It was found that 
the larger the spatial frequency of the ripple the wider out the 
maximum effect was observed.  Furthermore, it was 
established that as the AUT was displaced further from the 
origin of the measurement coordinate system the larger the 
impact that the amplitude taper amplitude ripple and phase 
ripple had on the corresponding antenna pattern measurement.  
This is expected as this implies that the AUT occupies a 
larger portion of the CATR QZ as it travels larger spatial 
distances as it is rotated during the course of the 
measurement. This of course justifies the normal CATR 

practice of placing the AUT as close to the centre of the QZ 
as possible as well as aiming to have the AUT rotation axes 
also at the QZ centre.  Finally, it was found that the standard 
specification for the uniformity of the CATR QZ of having 
amplitude taper of less than 1 dB, amplitude ripple of less 
than 0.5 dB in amplitude and 5 in phase corresponded to 
an uncertainty of very nearly 1 dB on a -20 dB side-lobe 
level which is in agreement with what one typically sees in 
practice.  This is a very pleasing result as it shows the CATR 
CEM model agrees with experience and for the first time 
shows how this uncertainty is comprised. 
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